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Abstract To facilitate rigorous analysis of molecular

motions in proteins, DNA, and RNA, we present a new

version of ROTDIF, a program for determining the overall

rotational diffusion tensor from single- or multiple-field

nuclear magnetic resonance relaxation data. We introduce

four major features that expand the program’s versatility

and usability. The first feature is the ability to analyze,

separately or together, 13C and/or 15N relaxation data col-

lected at a single or multiple fields. A significant

improvement in the accuracy compared to direct analysis

of R2/R1 ratios, especially critical for analysis of 13C

relaxation data, is achieved by subtracting high-frequency

contributions to relaxation rates. The second new feature is

an improved method for computing the rotational diffusion

tensor in the presence of biased errors, such as large con-

formational exchange contributions, that significantly

enhances the accuracy of the computation. The third new

feature is the integration of the domain alignment and

docking module for relaxation-based structure determina-

tion of multi-domain systems. Finally, to improve acces-

sibility to all the program features, we introduced a

graphical user interface that simplifies and speeds up the

analysis of the data. Written in Java, the new ROTDIF can

run on virtually any computer platform. In addition, the

new ROTDIF achieves an order of magnitude speedup over

the previous version by implementing a more efficient

deterministic minimization algorithm. We not only dem-

onstrate the improvement in accuracy and speed of the new

algorithm for synthetic and experimental 13C and 15N

relaxation data for several proteins and nucleic acids, but

also show that careful analysis required especially for

characterizing RNA dynamics allowed us to uncover subtle

conformational changes in RNA as a function of temper-

ature that were opaque to previous analysis.
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Introduction

Proteins and nucleic acids are two biopolymers at the

center of numerous cellular functions that can adopt intri-

cate three-dimensional architectures, and for the most part

remodel those pliant structures to accommodate ligands

and other signaling cues (Mittermaier and Kay 2006; Peng

2012; Dayie 2013; Dethoff et al. 2012). They can remodel

their three-dimensional architectures either by induced fit

or conformational capture or both (Pozzi et al 2012). In the

former case the nature of the binding event drives the free

state to the bound structure, whereas in the latter case the

ligand binding selects or captures the competent confor-

mation out of a population of pre-existing conformations

(Leulliot and Varani 2001). Given the primal roles that

structure and dynamics play, analysis of the molecular

motions of these biopolymers is critical for advancing our

understanding of the interplay of structure, dynamics, and

function. At the heart of those types of analyses is the
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ability to accurately quantify the overall rotational diffu-

sion tensor from NMR relaxation data. (Fushman et al.

1994, 1997, 1999b; Bruschweiler et al. 1995; Mandel et al.

1995; Tjandra et al. 1995; Peng and Wagner 1995; Tjandra

et al. 1997; Akke et al. 1997; Fushman and Cowburn

1998b; Hall and Fushman 2003; Fushman 2012). Recently

progress has been made on a number of fronts: (1) the

improved ability to refine the structures of complexes and

quantify molecular motion; (2) the use of the diffusion

tensor as a long-range orientational restraint for the struc-

tural characterization of multidomain systems (Fushman

et al. 1999b, 2004; Ghose et al. 2001; Fushman and

Cowburn 2002; Ryabov and Fushman 2006, 2007a) and for

analysis of dynamics of mostly the backbone of proteins

(Hall and Fushman 2003, 2006; Fushman et al. 2004), and

rarely for nucleic acid bases and ribose moieties (Akke

et al. 1997; Legault et al. 1998; Hoogstraten et al. 2000;

Dayie et al. 2002; Boisbouvier et al. 2003; Duchardt and

Schwalbe 2005; Eldho and Dayie 2007) and (3) the intro-

duction of the rotational diffusion tensor as a translational

restraint in rigid-body docking of multi-domain proteins

and protein–protein complexes (Ryabov and Fushman

2007b; Ryabov et al. 2010; Berlin et al. 2011).

All these approaches depend on fast and accurate

determination of the overall rotational diffusion tensor. To

directly obtain the fully anisotropic rotational diffusion

tensor from spin-relaxation rates using the model-free

approach (Lipari and Szabo 1982) data at multiple fields

need to be collected (Fushman and Cowburn 2001) and

subsequently a nonlinear, non-convex least-squares ana-

lysis performed (d’Auvergne and Gooley 2008). The dif-

ficulty of obtaining experimental relaxation data at several

fields, the algorithmic complexity of the computation, as

well as uncertainties in obtaining very accurate measures of

both the magnitudes and orientation of the chemical shift

anisotropy (CSA) tensors have all limited the adaptation of

the fully anisotropic diffusion tensor for structure analysis.

To obtain accurate estimate of the fully anisotropic

rotational diffusion tensor from spin-relaxation measure-

ments, the analysis is usually limited to those regions of the

macromolecules that are structured. There, the local

motions are characterized by relatively high order param-

eters (S2 & 1) and fast internal correlation times

(sloc B 100 ps). In this case it is possible to extract the

rotational diffusion tensor from ratios of relaxation rates

(e.g. R2/R1) instead of the relaxation data directly (Tjandra

et al. 1995; Fushman et al. 1999b), because the relaxation-

rates ratio cancels out the unknown factors such as the

dipolar and CSA terms and order parameters (Fushman

et al. 1999b, 2004; Fushman and Cowburn 2002), thus

allowing a direct determination of the rotational diffusion

tensor without the need for any additional site-specific

characteristics except for the orientation of the relaxation-

relevant internuclear vectors (see e.g. Fushman et al.

1999b). Several publicly available packages have been

developed to derive the anisotropic rotational diffusion

tensor from 15N relaxation rate ratios, including TENSOR

(Dosset et al. 2000), DIFFTENS (Ghose et al. 2001),

ROTDIF (Walker et al. 2004), and a 13C adaptation of the

latter program, ROTDIF_RNA (Eldho and Dayie 2007).

Here we introduce a new, redesigned version of the

ROTDIF software with numerous features that significantly

improve and expand the functionality and performance of

the program. The new version, ROTDIF 3, allows analysis

of 15N and 13C relaxation data (separately or together) at a

single or at multiple magnetic fields, and significantly

improves the computational performance of the previous

version by introducing a new multi-start convex optimi-

zation algorithm. ROTDIF 3 is an order of magnitude faster

than the previous version, and includes an option for robust

regression that increases the accuracy of computation in the

presence of outliers, such as those arising from confor-

mational exchange contributions, highly flexible residues,

and other contributions not captured by the models used in

the existing software.

As part of the current package, we integrate the new

ROTDIF module with the ab initio diffusion tensor predictor

ELM (Ryabov et al. 2006) and the alignment and transla-

tional docking modules developed in ELMDOCK (Berlin

et al. 2011). The updated domain-alignment method extends

the previous eigenvector-based domain-alignment approach

by now computing the globally optimal orientational align-

ment (Fushman et al. 1999b, 2004; Berlin et al. 2011). The

extended alignment approach yields improved solutions

when the principal values of the anisotropic rotational dif-

fusion tensors measured for the two domains are not identi-

cal. These new modules are designed for quantitative

analysis and interpretation of relaxation data in terms of

structural change.

All the modules are tightly integrated into a graphical

user interface (GUI), which replaces the previously

developed (MATLAB) command-line interface with a

more intuitive visual interface. Users can now rapidly

compute, analyze, and refine their diffusion tensor results,

as well as instantly compute an aligned and docked struc-

ture of a two-domain system. Importantly, the new ROT-

DIF package (and the associated ELM and ELMDOCK

modules) is written in Java, runs on any system with a Java

6? virtual machine, and requires no installation or any

adjustable parameters.

Finally, we apply the new package to synthetic data as

well as published relaxation data for two proteins (GB3 and

ubiquitin) and several nucleic acids [a Dikerson DNA

dodecamer, a fragment of RNA enzyme (D5), and UUCG

tetraloop capped RNA element]. We show that careful

analysis of relaxation data, especially for nucleic acids, is
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key for making meaningful conclusions about macromo-

lecular structure and function.

Method

The rotational diffusion tensor D is a symmetric positive

definite 3 9 3 matrix that characterizes the (generally)

anisotropic overall random reorientation (tumbling) of a

molecule in a solvent (Woessner 1962; Bruschweiler et al.

1995). Anisotropy applies when the tumbling rates around

various directions in a molecule are different. We label the

sorted eigenvalues (principal components) of D as

Dx B Dy B Dz, and define the orientation of the tensor

through the associated rotation matrix of a sorted eig-

endecomposition. We also define the overall rotational

correlation time as sc = 1/[2 9 tr(D)], where tr(D) is the

trace of D.

The overall molecular tumbling causes spin relaxation

of a nucleus P by modulating various interactions,

including the interaction with the external magnetic field

and dipolar couplings with other nuclei. For an isolated

pair of spin-1/2 nuclei P and Q (where, e.g. P is 15N or 13C

and Q is 1H), the rates of longitudinal (R1) and transverse

(R2) spin-relaxation and the steady-state nuclear overhauser

enhancement (NOE) of nucleus P are related to the rota-

tional diffusion tensor of the molecule via the following

equations (e.g. Dayie et al. 1996; Fushman and Cowburn

2001).

R1 ¼ 3ðd2 þ c2ÞJðxPÞ þ d2½JðxQ � xPÞ þ 6JðxQ þ xPÞ�;

R2 ¼
1

2
ðd2 þ c2Þ½4Jð0Þ þ 3JðxPÞ� þ

1

2
d2½JðxQ � xPÞ

þ 6JðxQ þ xPÞ þ 6JðxQÞ� þ Rex;

R3 ¼ 1þ
cQ

cP

d2½6JðxQ þ xPÞ � JðxQ � xPÞ�=R1; ð1Þ

where J(x) = J(x, v, D) is the spectral density of reori-

entational motion for the PQ bond, v is the bond’s orien-

tation, x is the Larmor precession frequency, Rex is the

conformational exchange contribution to R2,

d = -l0 cP cQ h/(16p2 r3) and c ¼ �xPCSA=3 are con-

stants representing the magnitude of the dipolar and CSA

interactions, r is the length of the PQ bond, h is the

Planck’s constant, and l0 is the vacuum permeability. Here

we refer to the steady state NOE as R3 throughout the

manuscript, and define it as R3 = Isat/Ieq where Isat and Ieq

are signal intensities of nucleus P measured when the

nucleus Q is in the saturated and in the equilibrium states,

respectively. The equations for R1 and R2 assume that the

chemical shift tensor of nucleus P is axially symmetric and

approximately oriented along the PQ bond (see Fushman

and Cowburn 1999 for corrections when this assumption is

not valid). We assume the model-free or extended model-

free forms of the spectral density functions J(x) (Lipari

and Szabo 1982; Clore et al. 1990). Expressions for J(x)

for the isotropic, axially-symmetric, and the fully aniso-

tropic diffusion models are given in Supporting Informa-

tion. Since J(x)’s dependence on the diffusion tensor is

nonlinear, solving Eq. (1) becomes a nonlinear optimiza-

tion problem.

Given R1, R2, and R3 at several fields, Eq. (1) can

potentially be solved for the overall rotational diffusion

tensor (together with the microdynamic parameters, e.g. S2

and sloc, and the dipolar and CSA terms) without making

any assumptions other than the Lipari–Szabo model for

J(x) (Lipari and Szabo 1982; Fushman and Cowburn

2001). However, when R1, R2, and R3 are only available at

a single field the general solution of Eq. (1) for D is ill-

posed (i.e. there are multiple solutions, as the number of

unknowns exceeds the number of available experimental

parameters), and hence impossible to solve without making

a priori assumptions about some of the variables (see e.g.

Fushman and Cowburn 2001).

In our approach we introduce an a priori restraint by

limiting our input to only those bonds that are in the

structurally well-defined (‘‘rigid’’) parts of the molecule

and were Rex � R2. It is possible to justify these

assumptions, for example, by selecting bonds from sec-

ondary structure elements and assessing Rex contributions

from comparison of the transverse auto- and cross-corre-

lation rates or from analysis of relaxation data at multiple

fields (Fushman and Cowburn 1998a, 2001; Fushman et al.

1999a; Kroenke et al. 1998).

Our analysis focuses on the ratio q of spectral density

components at x = 0 and x = xP. Based on Eq. (1) and

assuming that Rex = 0, q is directly related to the modified

ratio of spin-relaxation rates

q � 4

3

Jð0Þ
JðxPÞ

� 2R2 � R1 � HF2

R1 � HF1

; ð2Þ

in which we subtracted the contributions from high-

frequency components of the spectral density, HF1 and

HF2, defined as

HF1 ¼ d2½JðxQ � xPÞ þ 6JðxQ þ xPÞ�;
HF2 ¼ d26JðxQÞ:

ð3Þ

As shown earlier (Fushman et al. 1999b; Fushman and

Cowburn 2001, 2002), for ‘‘rigid’’ PQ bonds the reformu-

lation of the relaxation rates via a single q value allows one

to quantify spin-relaxation parameters for each individual

PQ pair via a single value that depends only on x, v, and

D and is independent of the CSA, dipolar term, and order

parameter values. This approach, therefore, reduces sig-

nificantly the number of model assumptions needed for
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forward prediction of the relaxation rates. Note that the

definition of q in our new version is the inverse of the

definition in the previous ROTDIF.

Based on the above definitions, we can approximate the

high-frequency contributions as

HF1 � w1 f ðR1;R3Þ;
HF2 � w2 f ðR1;R3Þ;

ð4Þ

where

f ðR1;R3Þ ¼
cP

cQ

R1ðR3 � 1Þ

¼ d2½6JðxQ þ xPÞ � JðxQ � xPÞ�; ð5Þ

and the coefficients w1 and w2 are estimated (Fushman and

Cowburn 1998a; Fushman et al. 1999a; Eldho and Dayie

2007) using reduced spectral density approach (Ishima and

Nagayama 1995; Farrow et al. 1995; Peng and Wagner

1995), and are usually assumed to be constant. For the

typical values of the overall rotational correlation time sc

of macromolecules (sc [ 4 ns) the values of xQ, xQ ± xP

are at the high-frequency tail of J(x) (scx � 1); therefore

the coefficients wi are nearly independent of sc, if S2& 1.

However, in our algorithm, instead of using pre-defined

constant w1, w2 values, as has been previously done

(Fushman and Cowburn 1998a; Fushman et al. 1999a;

Eldho and Dayie 2007), we compute w1 and w2 numeri-

cally for each bond (see next section).

Given the above definitions, the experimental ratio can

be estimated from the measured relaxation rates as

qexp � 2R2 � R1 � w2f ðR1;R3Þ
R1 � w1f ðR1;R3Þ

; ð6Þ

and the predicted ratio can be simply computed as

qpred ¼ 4

3

Jð0Þ
JðxPÞ

: ð7Þ

The problem of finding the rotational diffusion tensor can

now be expressed as a least-squares optimization problem:

Dexp ¼ arg min
D

v2ðv;DÞ; ð8Þ

where

v2ðv;DÞ ¼
XN

i¼1

qpred
i ðvi;DÞ � qexp

i

ri

" #2

; ð9Þ

N is the number of PQ bonds in the molecule,

vi = [vx
i , vy

i , vz
i] is the unit vector in the direction of the ith

PQ bond, qi
exp is the ratio, given by Eq. (6), of experi-

mentally measured transverse and longitudinal spin-relax-

ation rates (with high-frequency correction) for nucleus P

in the PQ bond i, qx
i (vi, D) is given by Eq. (7), and ri is the

experimental error in qi
exp. By selecting only relatively

rigid bonds for the analysis we assured that qpred depends

only on D and known values of v and x (Fushman et al.

1999b; Fushman and Cowburn 2002), thus making the new

formulation well-posed.

Initial estimate of parameters

Before performing global minimization of v2 to determine

the overall rotational diffusion tensor, we directly fit the

relaxation data, separately for each bond, in order to esti-

mate bond-specific sc, CSA, S2 , and Rex. Here sc has the

meaning of an effective (isotropic) overall rotational cor-

relation time. These values are not directly used in the

computation, but are instead used to provide warnings for

users when the estimated S2 values are too low, or Rex is

too high. If R3 is not provided, Rex is assumed to be 0, S2 is

set to 0.9, and only sc is estimated. When R3 is provided,

both sc and CSA values are estimated. If relaxation data at

only one field are available, we set Rex = 0 and S2 = 0.9.

For relaxation data at multiple fields all four variables are

computed. Initial estimates for CSA values are taken from

(Stueber and Grant 2002; Bryce et al. 2005; Ying et al.

2006; Hansen and Al-Hashimi 2006; Fushman and Cow-

burn 2001) (see Table S1), the CSA values are allowed to

vary by 40 ppm, if they are fitted. The bond lengths are

assumed to be 1.02 and 1.09 Å, respectively, for NH and

CH bonds (Case 1999; Ferner et al. 2008).

Subtracting high-frequency contributions

from relaxation rates

Accurate subtraction of the high-frequency contributions

from the experimental rates in Eq. (2) is fundamental to our

v2 minimization method. The accuracy of the subtraction

depends on finding the proper w1 and w2 values. We pro-

vide two methods for computing w1 and w2 depending on

whether the R3 data are available or not.

For the first method, when R3 data are available, the w1

and w2 are approximated from Eqs. (3), (4), and (5), by

solving for w1 and w2 the following equations

JðxQ � xPÞ þ 6JðxQ þ xPÞ ¼ w1½6JðxQ þ xPÞ � JðxQ � xPÞ�;
6JðxQÞ ¼ w2½6JðxQ þ xPÞ � JðxQ � xPÞ�;

ð10Þ

based on the theoretical definition of J(x) (see Supporting

Information) and using our initial estimate for sc. The

values of w1 and w2 vary only slightly for different sc

values (as S2 cancels out in the equations), providing a

highly stable estimate for the constants, even when our sc

estimate significantly deviates from the true value.

For the second method, when R3 data are not available,

we approximate the R3 value from Eq. (1) using the
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experimental R1 value and computing the spectral densities

using our estimate for sc. Since the initial sc value esti-

mated from just one bond can be unreliable, we refine the

w1, w2, and qexp by solving Eq. (8) for Dexp using the initial

q estimates, and then updating each qexp based on the more

stable estimate of sc. These refined qexp values are then

used to solve Eq. (8) for the final value of Dexp.

Figure 1 shows that we are able to accurately compute q
from synthetically generated 15N or 13C relaxation data by

subtracting high-frequency contributions using Eqs. (6) and

(10). The accuracy is measured by the relative error of the

recovered sc that we extract from the computed relaxation

ratio q. The synthetic relaxation data were created from

randomly sampled inputs of sc = [5, 20] ns, S2 =

[0.8, 1], sloc = [0.001, 0.1] ns, and a range of CSA and

r values of [120, 220] ppm and [0.98,1.05] Å for N–H,

[5, 60] ppm and [1.07, 1.10] Å for C10–H10, and

[150, 230] ppm and [1.07,1.10] Å for C6–H6, assuming

isotropic overall rotational diffusion. The spectrometer

frequency was set to 600 MHz, 3 % Gaussian error was

added to the R1 and R2 data and 5 % error was added to R3.

In addition, we also evaluated the accuracy of the high-

frequency contribution subtraction approach in the case

when R3 is unknown, and of the direct R2/R1 ratio

approach, computed using the assumption of S2 = 1. Note

that by including C10–H10 and C6–H6 in our results, we

tested our method for both low and high 13C CSA values.

The results in Fig. 1 show that for majority of the input
13C data the errors in sc are smaller than 6 % (\2 % for
15N). Furthermore, high-frequency-contribution subtraction

provides a significant improvement in accuracy in the 13C

case, compared to the direct R2/R1 method, while removing

the dependence on CSA, dipolar coupling, S2, and pro-

viding a significant reduction in the computational com-

plexity. The values of w1 and w2 fluctuate by about 0.01 %

for 15N and 0.1 % for 13C, for the synthetic data ranges

used here (see above).

Algorithms for computing the rotational diffusion

tensor

Having derived qexp, we now present algorithms for solv-

ing Eq. (8). As mentioned above, there are three rotational

diffusion tensor models that are commonly used to model

J(x). The most general is the fully anisotropic model,

where all three eigenvalues of the rotational diffusion

tensor are unique. In the case when two eigenvalues of the

tensor are equal, the fully anisotropic model can be sim-

plified to an axially-symmetric model. Finally, when all

three eigenvalues are equal, a simple isotropic model is

used. The axially-symmetric and isotropic models can be

directly derived from the fully anisotropic model. See

Supporting Information for the definition of J(x) for the

three diffusion tensor models and their derivations.

First, we note that for the isotropic diffusion tensor

model, Eq. (8) can be analytically solved for D (see Sup-

porting Information),

sc ¼
1

xP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4
qexp � 1

r�����

�����; ð11Þ

where Diso = 1/(6sc) is the eigenvalue of D. This solution

will serve as an initial estimate for the eigenvalues of the

axially-symmetric and the fully anisotropic models. The

isotropic-model algorithm is given in Supporting

Information.

We then use the isotropic solution as an initial guess for

the axially-symmetric Dexp. This eliminates the need for a

user-defined range of eigenvalues, required in the previous

ROTDIF version (Walker et al. 2004), and at the same time

speeds up convergence of the iterative minimization. V, the

orthonormal matrix of the eigenvectors of the diffusion

tensor, can be expressed using three Euler angles a, b, and

c. Since two of the eigenvalues are equal in the case of the

axially-symmetric model, the orientation of the diffusion

tensor can be described by the orientation of the unique
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Fig. 1 The percent of simulations, from 1,000 independent runs, in

which the relative error in the recovered sc was below the listed

thresholds. The sc values were derived from the generated synthetic

relaxation data using the following methods: direct analysis of the R2/

R1 ratios (red bars, left) or analysis of the q values [Eq. (6)] with

high-frequency contributions subtracted using known R3 values

(green bars, right) or using predicted R3 values, assuming that the

measured R3 values are not available (blue bars, middle). a The

results for 15N in N–H bonds in a protein. b The results for 13C in

C10–H10 bonds in RNA. c The results for 13C in C6–H6 bonds in RNA
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eigenvalue, Dk. Therefore, we can express this orientation

using only a and b angles and set c = 0.

Due to the periodicity of the diffusion tensor in spherical

coordinate space (see e.g. Ghose et al. 2001), Eq. (9) is p
periodic in the two Euler angles (Walker et al. 2004). We

take a similar approach to minimizing our v2 as before

(Walker et al. 2004), but instead of randomly sampling a

large number of angles for initial guesses to the nonlinear

least-squares solver, we only make four initial guesses for a
and b: [0, 0], [0, p/2], [p/2, 0], and [p/2,p/2]. Addition-

ally, we alternate between the last and the first two

eigenvalues being equal to handle the prolate (Dx &
Dy \ Dz) and the oblate (Dx \ Dy & Dz) cases. The

alternating is needed when using an axially-symmetric

diffusion tensor model to analyze relaxation data for a

molecule with full rotational anisotropy, since both a pro-

late and an oblate tensor solution exist in this case

(Blackledge et al. 1998). We therefore perform nonlinear

least-squares minimization for eight initial guesses only.

The complete algorithm is shown in Supporting Informa-

tion. By applying the algorithm to real and randomly

generated synthetic data, we empirically confirmed that our

method was able to find the true minimizer every time.

Finally, we solve for the fully anisotropic diffusion

tensor Dexp. Again, we use the solution from the isotropic

model as an initial guess. We make an observation, similar

to that for the axially-symmetric case, that qpred is p
periodic for a, b, and c. We therefore take eight initial

guesses for the Euler angles: [0, 0, 0], [0, 0, p/2], [0, p/

2, 0], [0, p/2, p/2], [p/2, p/2, 0], and [p/2, p/2, p/2]. The

complete algorithm is provided in Supporting Information.

Again, by applying the algorithm to real and randomly

generated synthetic data, we empirically confirmed that our

method was able to find the true minimizer every time.

Robust least-squares

In Eq. (8) we defined the experimental diffusion tensor as

the minimizer of v2. In expressing our problem as the

minimization of the sum of squares of weighted residuals

we made an implicit assumption that the weighted pre-

diction model (values of qi
pred/ri) is an unbiased estimator.

However, when equating qexp to qpred in Eq. (2) we

assumed that Rex is negligible. For some sites in a molecule

Rex can be a significant contributor to the R2 relaxation rate.

Since Rex is always positive, our qpred values are biased

estimators of qexp, violating the basic assumption of v2-

minimization. We therefore introduce a robust regression

method for estimating the experimental diffusion tensor

that should partially compensate for this bias. The method

is deterministic and makes an assumption that it is possible

to detect major outliers based on the initial solution, given

by equation Eq. (8).

We redefine our target function v2 by replacing it with

the outlier-damping version, v2
T , such that

v2
Tðv;DÞ ¼

Xn

i¼1

min ½Dþ lnð di � Dj j þ 1Þ�2; d2
i

� �
;

di ¼
qpred

i ðvi;DÞ � qexp
i

ri

;

ð12Þ

where D ¼ 3:0. Setting D ¼ 3:0 significantly dampens the

contribution of residuals that are greater than 3ri (above

99.7 percentile). The initial guess into the least-squares

method is now given by Eq. (8).

Molecular alignment, docking, and dynamics

The major goal of ROTDIF is to allow users to accurately

and efficiently process relaxation data and understand the

results in an intuitive way. Though the diffusion tensor

provides important information about the overall shape of

the molecular system under observation, it is difficult to

relate the quantitative values of the diffusion tensor to

actual structural models.

In case of bimolecular systems, we have previously

demonstrated that rigid-body alignment and docking of the

molecules based on relaxation data alone can provide fairly

accurate models for inter-molecular interactions (Ryabov

and Fushman 2007b; Berlin et al. 2011). In ROTIDF 3 we

provide a built-in interface, described in the next section,

that allows the user to seamlessly switch from simple

derivation of the diffusion tensor to immediate quantifica-

tion of the results [using ELMDOCK (Berlin et al. 2011)]

in terms of intermolecular orientation and positioning,

without requiring any additional input data or program

parameters. These new functionalities, described below,

have an advantage of providing immediate quantitative/

structural information and its visualization.

First, the computationally improved version of the

ab initio prediction of the rotational diffusion tensor (ELM)

developed earlier (Ryabov et al. 2006) can be directly

accessed via a button on the main screen. ELM is based on

an ellipsoid representation of the molecular shape. This

component has been completely rewritten to provide sig-

nificant improvement in speed and stability, and can be

accessed as a standalone component or through the pro-

vided application programming interface (API). Instead of

fully computing the solvent-accessible surface, as imple-

mented in the original version, the surface is approximated

by placing multiple uniformly distributed spheres (repre-

senting water molecules) around each atom. Each sphere is

checked for collision against all atoms of the molecule in

O(log N) time by use of an octree, and the colliding spheres

are removed from the computation. The contact points
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between the remaining spheres and the atoms are used to

compute the best-fit ellipsoid, and the associated diffusion

tensor of the ellipsoid is computed, as previously described

(Ryabov et al. 2006). The ab initio predicted diffusion

tensor is computed in under a second, and can be imme-

diately compared to the tensor derived directly from the

experimental data.

Second, our diffusion-tensor-guided docking program

ELMDOCK (Berlin et al. 2011) is also directly integrated

into ROTDIF 3. The docked model based on the relaxation

data (currently limited to two molecules/domains) is

computed within a few seconds, and the resulting structure

can be saved directly to a PDB-format coordinate file. The

integrated version of ELMDOCK includes a new global

alignment algorithm that improves upon the eigendecom-

position-based alignment method used previously (Berlin

et al. 2011). The eigendecomposition method is now used

as an initial guess for a convex non-linear least-squares

optimizer that further refines the Euler angles, so either

Eqs. (9) or (12) is now minimized.

The new alignment algorithm and the ab initio diffusion

tensor predictor ELM are combined to create a rigid-body

alignment and docking algorithm. The algorithm uses the

BOBYQA derivative-free minimizer (Powell 2009), and

follows the basic algorithm described previously (Berlin

et al. 2011), but now the overall v2 [Eq. (9)] is directly

minimized. All the docking components can be accessed

separately through the provided API or directly from the

main ROTDIF 3 interface. All docking parameters are

automatically selected by the program, and no problem-

specific adjustment is ever required.

Finally, model-free analysis of local bond dynamics,

based on the DYNAMICS (Fushman et al. 1997; Hall and

Fushman 2003; Fushman 2012) program, has been inte-

grated into ROTDIF 3. The model selection is now per-

formed using Akaike information criterion (AIC), instead

of the F test, as suggested elsewhere (d’Auvergne and

Gooley 2003).

User interface

The most visible change in the new version of ROTDIF is

the introduction of a GUI. The interface ties together all the

features of ROTDIF in a simple main window, instead of

the previous command-line interface. The concept behind

the interface is to allow the user to leverage the fast

computation time of our algorithm in order to quickly and

intuitively understand and refine the experimental data.

The status of parsing an input file is immediately displayed

once the file has been selected, and the progress of com-

putation is shown via a progress bar. Once the diffusion

tensor is computed, its principal axes can be overlaid on

top of the molecule and visualized in PYMOL (DeLano

2002) via an automatically generated python script. The

sample screenshots of the interface are given in Fig. 2.

The interface also provides error-dialog screens to allow

the user to clearly understand where the error is (e.g.,

wrong variable format, wrong variable names, mismatched

information, etc), and how it should be corrected. All of the

plots available in the previous ROTDIF version (Walker

et al. 2004) can now be accessed through individual but-

tons on the main screen. The plots also provide interactive

access to additional information: individual data points in

the plots can now be identified and detailed information

displayed when mousing over them.

Results

To quantify the speed and accuracy of our algorithms, we

tested ROTDIF 3 on various synthetic and real experi-

mental data. The computation and timing were performed

on a Macbook Pro laptop with a 2.66 GHz Intel Core i7

processor. Apache Math Commons 3.2 library was used for

non-linear minimizations.

Analysis of synthetic data

To demonstrate the speedup of ROTDIF 3 we compared

the computation time of our new algorithm against the

direct analysis of R2/R1 ratios, also using our newly

developed deterministic minimization algorithm, and the

previous version of ROTDIF. The timing results for vari-

ously sized synthetic input data (Fig. 3) demonstrate orders

of magnitude improvement in computational performance

relative to the previous version. This improvement is due to

the new deterministic sampling of starting points during

minimization, efficient caching techniques for quick

recomputation of J(x), and the superior performance of

Java 6 compiler and virtual machine relative to MAT-

LAB’s virtual machine (previous ROTDIF). The results

also show that using the q values [Eq. (6)] instead of the

R2/R1 ratios, gives about a two-fold speedup in

computation.

We further demonstrate the accuracy of diffusion tensor

recovery from randomly generated data for the input

parameters range used for Fig. 1, where we used relaxation

data for a single bond-vector, but now we test for accuracy

using an aggregate of 100 randomly orientated bond-vec-

tors which share the same rotational diffusion tensor. For

the isotropic case the diffusion tensor was chosen to have

uniformly distributed random sc values in the range

between 5 and 20 ns. For the anisotropic tensor the prin-

cipal values of the diffusion tensor were set to 1.0, 2.0, and

3.0 9 10-7 s-1. The average errors in the recovered
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diffusion tensor characteristics are shown in Fig. 4 in

comparison with the direct analysis of R2/R1.

As in our single-bond simulations (see Fig. 1), by sub-

tracting high-frequency contributions from relaxation rates

we are able to accurately recover the full rotational diffu-

sion tensor in the presence of noise, in the absence of

conformational exchange (see Fig. 4a–c and the 0 % val-

ues in the plots in Fig. 4d–i). While our approach provides

only a minor improvement in the accuracy over the R2/R1

method for 15N relaxation and Rex = 0, the accuracy is

significantly improved in the 13C case, while not making

any assumptions about the CSA values.

As mentioned above, R2 relaxation rates could contain

an additional positive contribution from Rex, which intro-

duces a bias in our model. This bias breaks the basic

assumption of v2 minimization, and can introduce signifi-

cant errors in the solution. Therefore, we analyzed the

accuracy of our method under increasing amounts of error

introduced by adding large Rex values to some percentage

of residues. Rex values were chosen from a uniform dis-

tribution, with 5 \ Rex \ 10 s-1 for 15N, and 25 \ Rex

\ 50 s-1 for 13C. The results of the simulation, shown in

Fig. 4d–i, clearly demonstrate that the robust regression

method can significantly reduce errors in the derived

rotational diffusion tensor in those cases where confor-

mational exchange contributions are present. Even in case

of significant overall Rex contributions, or potentially other

outliers that do not fit the model-free assumption, the

robust regression method is able to provide an accurate

estimate of the anisotropic tensor. This ability to accurately

Fig. 2 Demo screenshot of ROTDIF’s GUI and an overlay of the rotational diffusion tensor axes onto a protein structure in PYMOL (DeLano

2002) via a ROTDIF-generated script
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Fig. 3 Timing results for computation of the anisotropic rotational

diffusion tensor for randomly generated data of various sizes. The

black line (squares) corresponds to direct analysis of R2/R1, achieved

using our new deterministic initial sampling approach. The blue line

(triangles) shows timing for the new deterministic high-frequency

subtraction algorithm. The red line (circles) represents the previous

version of ROTDIF, which uses a stochastic initial sampling

algorithm. Note that both R2/R1 and ROTDIF 3 are implemented in

Java, while the old ROTDIF runs in Matlab
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estimate the diffusion tensor tensor can be used to quickly

identify outliers, orient multi-domain molecules during

molecular docking, or when computing diffusion tensors

for large uncurated datasets in high-throughput

applications.

Application to experimental relaxation data

We now analyze experimental data for various systems to

demonstrate that our method successfully reproduces pre-

viously published diffusion tensors, while all of our results

were computed without any input-specific adjustment,

selection of initial values (e.g. the upper and lower bounds

on the D eigenvalues), any manual curation of local min-

ima, or any other non-default option. The comparison is

done using previously published results for the B3 domain

of protein G (GB3) (Hall and Fushman 2003), ubiquitin

(Sheppard et al. 2009, 2010), as well as for several RNA

and DNA constructs for which relaxation data are available

(Boisbouvier et al. 2003; Eldho and Dayie 2007; Duchardt

and Schwalbe 2005; Akke et al. 1997; Ferner et al. 2008).

We use the first model from the PDB coordinates of each

system for all analyses, and the PDB-data coordinate frame

for our reported results. We define the anisotropy of the

diffusion tensor as (Fushman et al. 2004)

f ¼ 2Dz=ðDx þ DyÞ if Dx � Dy

�� ��\ Dy � Dz

�� ��;
2Dx=ðDy þ DzÞ otherwise;

�
ð13Þ

and the rhombicity as
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Fig. 4 Simulation results for a set of 100 uniformly oriented PQ

vectors, based on relaxation data for 15N in N–H bonds in a protein

(left column), 13C in C1’–H1’ bonds in RNA (middle column), and
13C in C6–H6 bonds in RNA (right column). All simulations were

performed for 1,000 independent runs. a–c The percent of simulations

in which the relative error in the recovered sc was below the listed

thresholds, for isotropic diffusion tensor model. The sc values were

computed using the following methods: direct analysis of the R2/R1

ratios (red bars) or analysis of the q values with high-frequency

contributions subtracted using known R3 values (green bars) or using

predicted R3 values, assuming that the measured R3 values are not

available (blue bars). d–i Errors in the computed diffusion tensor

(Dpred) relative to the input tensor (Dexp) for the anisotropic diffusion

tensor model (Dx = 1 9 10-7 s-1, Dy = 2 9 10-7 s-1, Dz =

3 9 10-7 s-1). The x-axis shows the percentage of residues with

Rex [ 0. Shown are errors in the magnitude (d–f) and orientation (g–

i) of the tensor
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g ¼ 3ðDy � DxÞ=ð2Dz � Dx � DyÞ if Dx � Dy

�� ��\ Dy � Dz

�� ��;
3ðDy � DzÞ=ð2Dx � Dy � DzÞ otherwise:

�

ð14Þ

For GB3 we analyzed an extensive set of 15N relaxation

data (see Fig. 5) measured at five different magnetic fields

(corresponding to 1H frequency of 400, 500, 600, 700, and

800 MHz) at 24 �C (Hall and Fushman 2003; Hall and

Fushman 2006). Residues 2, 11, 12, 39, 40, 41, 47, 48,

49, 50, and 56 were excluded from the analysis because of

their signal overlap, location in the flexible loops or tail,

mutations that deviated from the original sequence/struc-

ture, and residues that were identified to undergo confor-

mational exchange (Hall and Fushman 2003). Additionally,

for the 800 and 500 MHz data, residues 10 and 38 were

extreme outliers and therefore were excluded as well.

The results in Table 1 demonstrate that the old and the new

versions of ROTDIF yield almost identical results for the GB3

dataset (in fact, the two versions give essentially identical

results for any 15N dataset that includes R1, R2, R3). More-

over, when performing a ‘‘blind’’ computation on all the

residues, not just the core, our new robust regression algo-

rithm provided much better result than the standard optimi-

zation algorithm, and was able to converge to the expected

solution, as given by the ‘‘core’’ residues. In all cases, the

angles between the computed diffusion tensor, the inertia

tensor, and ELM-predicted diffusion tensor largest principal

axes are around 5�, a good match to the theoretically expected

results. Since robust regression provides a close solution to

that for manually curated data, we conclude that it can be used

to effectively identify significant outliers, as well as be used

directly in blind high-throughput analyses of relaxation data.
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Fig. 5 The agreement between the experimental and back-calculated
15N relaxation data for GB3 at five magnetic fields for the fully

anisotropic diffusion tensor model. a The correlation plot of the

experimental versus back-calculated q values. b Fit residuals for

individual residues, scaled by their associated standard deviations

Table 1 Characteristics of the rotational diffusion tensor of GB3 derived by ROTDIF from 15N relaxation data for the fully anisotropic diffusion

model

Methoda Residuesb Dx* Dy Dz a* b c sc* fc gd

Old Core 4.43 ± 0.16 4.57 ± 0.21 5.97 ± 0.39 93 ± 9 77 ± 7 56 ± 32 3.34 ± 0.10 1.33 ± 0.09 0.14 ± 0.02

ROTDIF 3 Core 4.43 ± 0.07 4.57 ± 0.07 5.97 ± 0.09 93 ± 3 77 ± 3 59 ± 29 3.34 ± 0.01 1.33 ± 0.03 0.14 ± 0.10

ROTDIF 3 All 4.39 ± 0.04 4.49 ± 0.04 6.05 ± 0.06 90 ± 1 68 ± 2 116 ± 31 3.35 ± 0.01 1.36 ± 0.02 0.10 ± 0.06

ROTDIF 3

(robust)

All 4.44 ± 0.05 4.58 ± 0.07 5.98 ± 0.08 96 ± 2 71 ± 3 81 ± 24 3.34 ± 0.01 1.33 ± 0.03 0.14 ± 0.11

ROTDIF 3 Core (5

fields)

4.41 ± 0.03 4.62 ± 0.03 6.03 ± 0.03 97 ± 1 75 ± 1 60 ± 4 3.32 ± 0.00 1.34 ± 0.01 0.21 ± 0.05

ROTDIF 3

(robust)

All (5

fields)

4.39 ± 0.03 4.65 ± 0.03 6.05 ± 0.03 98 ± 1 75 ± 1 59 ± 3 3.31 ± 0.00 1.34 ± 0.01 0.26 ± 0.06

* The units are 107 s-1 for Dx, Dy, Dz, ns for sc, and degrees for a, b, and c angles
a The method used for the computation of the diffusion tensor. ‘‘Old’’ is the previously published version of ROTDIF, ‘‘ROTDIF 3’’ is our new

ROTDIF 3, and ‘‘ROTDIF 3 Robust’’ is the robust regression algorithm in ROTDIF 3
b Set of bond vectors selected for diffusion tensor analysis. ‘‘Core’’ residues are defined as 3–10, 13–38, 42–46, 51–55 in GB3. 600 MHz data

were used, unless specified otherwise
c Anisotropy, see Eq. (13)
d Rhombicity, see Eq. (14)
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We now focus on three new features of ROTDIF 3:

deriving rotational diffusion tensor from 13C data, from

combined 15N and 13C relaxation data, and validation of the

results based on ab initio prediction of the rotational diffu-

sion tensor using our built-in ELM module. Combined

analysis of 15N and 13C relaxation data for a protein, using

the axially-symmetric model, has been demonstrated before

(Lee et al. 1997). However, accurate analysis of 13C or both
15N and 13C relaxation data using fully anisotropic diffusion

tensor model, while particularly important for DNA and

RNA, has been lacking; yet their function rely heavily on

dynamics, and thus accurate characterization of the overall

rotational diffusion tensor is essential (Dethoff et al. 2012;

Shajani and Varani 2007; Rinnenthal et al. 2011).

We start with the combined analysis of published 15N

and 13C relaxation data (Sheppard et al. 2009, 2010) for a

well-characterized protein ubiquitin (PDB ID: 1D3Z). In

our approach we combine the carbon and nitrogen q ratios,

and fit them directly. The data were collected at 26 �C on a

spectrometer with 1H frequency of 600 MHz. The 13C

relaxation data were obtained using a ubiquitin sample

selectively 13C labeled at Ca positions; this removed
13C–13C contributions to the measured relaxation rates.

Based on the secondary structure and previous studies of

ubiquitin, we defined residues 1–6, 12–14, 16, 17, 22, 25,

27–29, 31, 34, 39–45, 57–59, 64, 66–69 as the ‘‘core’’ rigid

residues in this protein. The results of our analyses are

shown in Table 2 and Fig. 6 together with the previously

published data.

For the combined data, based on both the AIC (d’Auvergne

and Gooley 2003) (AIC = 97 for axially-symmetric vs. 57 for

fully anisotropic) and the statistical F test (F = 27), the fully

anisotropic diffusion model provides the best fit to the

experimental data. However, due to the higher level of

experimental noise in the reported 13C data, from the 13C data

alone it was only possible to reliably determine the isotropic

diffusion tensor. The axially-symmetric solution is also

shown in this case, for completeness.

The ROTDIF 3 results in Table 2 closely match the

published results for this dataset (Sheppard et al. 2009)

and the results of previous studies of 15N relaxation in

ubiquitin (Tjandra et al. 1995). Note that the previously

reported analysis(Sheppard et al. 2009) of the more prob-

lematic 13C data used independently-derived residue-spe-

cific 13C CSA values (Tjandra and Bax 1997), while our

ROTDIF 3 computation was performed with no prior

information and using only default settings (see Supporting

Information). The results demonstrate that our method for

subtracting high-frequency contributions from 13C relaxa-

tion data is effective and consistent with the more estab-

lished approach to 15N data analysis (Fushman et al.

1999a, 1999b, 2004; Fushman and Cowburn, 2002; Walker

et al. 2004). Note that, like for GB3, the robust-regression T
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analysis, which blindly selects all the residues, yielded a

solution similar to that for ‘‘core’’ residues.

We now focus of analysis of relaxation data for nucleic

acids. The first nucleic acid relaxation data set analyzed is for

the Dickerson DNA dodecamer, d(CGCGAATTCGCG)2

(Boisbouvier et al. 2003). This molecule was the first com-

plete turn of B-DNA to be successfully crystallized and has

been used as a model system since. Due to the palindromic

nature of this DNA, the measured data correspond to both

strands, which improves the orientational sampling of bond

vectors. Indeed, we noticed a decrease in the orientational

sampling parameter (N) (Fushman et al. 2000) from 0.138, for

just one-strand vectors, to 0.108 for the double-strand vectors.

The improved sampling of bond orientations can also be easily

visualized using the new ROTDIF 3 GUI. The importance of

orientational sampling for accurate determination of the dif-

fusion tensor was discussed earlier (Fushman et al. 2000;

Boisbouvier et al. 2003). The experimental 13C R1 and R2

values taken from published data (Boisbouvier et al. 2003)

were obtained at 35 �C and a 1H frequency of 600 MHz. To

avoid large CSA contributions to the relaxation rates, data

were only measured for the ribose carbons, (C10, C30, and C40),
where the carbon CSA is small (Boisbouvier et al. 2003). No

R3 values were available with these data, so we estimated R3 as

described above. Nucleotides C1 and G12, corresponding to

the flexible tail of the DNA fragment, were excluded from the

definition of ‘‘core’’ residues due to their rapid internal

motions. The bond vector orientations were obtained from the

highly-refined NMR structure (PDB ID 1NAJ) (Wu et al.

2003). The results are shown in Table 3.

When the nineteen qexp values were assigned to only one

strand of the DNA palindrome, a sc of 3.22 ± 0.01 ns was

determined for the axially-symmetric model, shown in

Table 3. The fully anisotropic solution also closely mat-

ches in magnitude and orientation the axially-symmetric

solution, though the improvement in the fit is not statisti-

cally significant.

Assigning the nineteen qexp values to both strands of the

palindromic DNA improved the sampling of bond

orientations and yielded a sc of 3.29 ± 0.01 ns (Table 3).

This matches the published value of 3.35 ± 0.03 ns, as

well as the theoretical value predicted by ELM. Note that

ROTDIF 3 automatically selected the prolate solution in

the axially-symmetric case, since our algorithm was able to

detect also the local minimum corresponding to the oblate

solution (see e.g. Blackledge et al. 1998), without the need

for any manual curation of the two cases. The orientation

of the axially-symmetric diffusion tensor deviates only by

3� from the theoretical ELM solution (shown in Fig. 7),

and by 5� from the inertia tensor. The quality of axially-

symmetric tensor fit is shown in Fig. 8, and demonstrates

that all the residuals fall within 2r of the predicted values.

Robust regression was not run because of high r error

estimates, such that all residuals for the regular regression

were already below 3r.

The next set of relaxation data analyzed here is for the

D5 RNA fragment from the group 2 intron ribozyme (El-

dho and Dayie 2007) (Table 4), to illustrate the difficulty of

correctly analyzing relaxation data from a very flexible

RNA. The data were taken at 25 �C at a 1H frequency of

499.95 MHz. The solution structure (PDB ID 2F88) of D5

was used for orientation of the CH bond vectors (See-

tharaman et al. 2006). The original publication (Eldho and

Dayie 2007) used a previous version of modified ROTDIF

to obtain a diffusion tensor using carbon relaxation data,

which yielded a sc of 6.0 ± 0.3 ns. One of the great

challenges of relaxation data analysis for RNAs with

flexible components is which ‘‘flexible’’ nucleotides to

exclude from the diffusion tensor determination. In the

original publication, 16 out of the 25 bond vectors were

excluded (Eldho and Dayie 2007). These vectors corre-

sponded to the highly flexible stem loop (nucleotides

15, 16, 17, and 18), internal bulge (nucleotides

24, 25, 26, and 28), and catalytic triad (nucleotides

2, 3, and 4). Disregarding this large number of data points

prompted us to re-investigate how the results for D5

depend on which nucleotides are excluded. Table 4 shows

diffusion tensor results for various combinations of the

(A)
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Fig. 6 Combined fit of the 15N

and 13C (inset) relaxation data

for the core residues in ubiquitin

to the fully anisotropic diffusion

tensor model. a The agreement

between the experimental and

back-calculated q values. b The

residuals of fit for individual

residues, scaled by their

associated standard deviations

344 J Biomol NMR (2013) 57:333–352

123



flexible regions removed. One can see that, as more

nucleotides are added back to the data pool the sc value

gradually increases but remains within the error bounds of

the original publication. However, the estimate of the dif-

fusion tensor orientation is what is most affected. This

illustrates the need to be extremely cautious in excluding

flexible nucleotides from analysis. Introducing robust

analysis is one significant improvement over the previous

iteration of the ROTDIF software for RNA analysis.

In this regard, it is also important to note that exclusion

of nucleotides/vectors can greatly reduce the orientational

sampling of the data. When all nucleotides are included,

the orientational sampling parameter is N ¼ 0:195: Upon

removal of the stem loop, internal bulge, and catalytic triad

the N value raises to 0.280 and triggers a warning message.

This case illustrates an important caveat when analyzing

data sets with a limited number of vectors. It is not always

immediately apparent which flexible vectors to exclude

while retaining a sufficient orientational sampling in such

cases. However the GUI and fast computational speed of

ROTDIF 3 allow the user to quickly perform extensive

analysis of various possible combinations of included

vectors. While this does not answer the question which of

the possible combinations most closely resembles the

physical reality, it does provide the necessary metrics to

arrive at reasonable conclusions.

To illustrate the utility of simultaneously analyzing

both 15N and 13C relaxation data, not just for proteins but

also for DNA and RNA, we now demonstrate ROTDIF 3

analysis on the well-studied cUUCGg tetraloop motif.

For this cUUCGg tetraloop motif there is a wealth of

relaxation data available, including both 15N and 13C. In

Fig. 7 The principal axes (z) corresponding to the Dz component of

the determined (axially-symmetric) and ELM-predicted rotational

diffusion tensors, overlaid on top of the cartoon representation of the

Dickerson DNA dodecamer, d(CGCGAATTCGCG)2. There is a 1�
difference in the orientation of the two axes. The PyMOL script for

drawing the axes was automatically generated by ROTDIFT
a

b
le

3
R

o
ta

ti
o

n
al

d
if

fu
si

o
n

te
n

so
r

fo
r

th
e

D
ic

k
er

so
n

D
N

A
d

o
d

ec
am

er
,

d
(C

G
C

G
A

A
T

T
C

G
C

G
) 2

,
d

et
er

m
in

ed
b

y
R

O
T

D
IF

fr
o

m
ri

b
o

se
C

H
1
3
C

re
la

x
at

io
n

d
at

a

M
et

h
o

d
N

u
cl

eo
ti

d
es

D
x
*

D
y

D
z

a*
b

c
s c

*
f

g

P
u

b
li

sh
ed

(B
o

is
b

o
u

v
ie

r
et

al
.

2
0

0
3

)
C

o
re

b
3

.6
4

3
.6

4
7

.6
4

–
–

–
3

.3
5

±
0

.0
3

2
.1

±
0

.0
4

–

R
O

T
D

IF
3

C
o

re
a

4
.3

0
±

0
.1

0
4

.3
0

±
0

.1
0

6
.9

3
±

0
.1

5
9

4
±

1
8

5
±

2
–

3
.2

2
±

0
.0

2
1

.6
1

±
0

.0
7

–

R
O

T
D

IF
3

C
o

re
b

3
.7

7
±

0
.0

9
3

.7
7

±
0

.0
9

7
.6

6
±

0
.1

6
9

5
±

1
9

7
±

1
–

3
.2

9
±

0
.0

2
2

.0
3

±
0

.0
9

–

R
O

T
D

IF
3

c
C

o
re

b
3

.6
5

±
0

.1
0

3
.8

2
±

0
.0

9
7

.7
3

±
0

.1
7

9
5

±
1

9
7

±
1

9
2

±
8

3
.2

9
±

0
.0

2
2

.0
7

±
0

.1
0

0
.0

6
±

0
.0

2

E
L

M
d

–
3

.3
5

4
.4

9
6

.9
4

9
7

9
3

9
8

3
.3

8
1

.7
7

0
.5

7

F
ir

st
m

o
d

el
o

f
1

N
A

J
w

as
u

se
d

fo
r

al
l

co
m

p
u

ta
ti

o
n

s

*
T

h
e

u
n

it
s

ar
e

1
0

7
s-

1
fo

r
D

x
,

D
y
,

D
z,

n
s

fo
r

s c
,

an
d

d
eg

re
es

fo
r

a,
b,

an
d

c
an

g
le

s
a

S
in

g
le

-s
tr

an
d

ed
,

w
h

er
e

th
e

re
la

x
at

io
n

d
at

a
w

er
e

as
si

g
n

ed
o

n
ly

to
st

ra
n

d
A

b
D

o
u

b
le

-s
tr

an
d

ed
,

w
h

er
e

d
u

e
to

th
e

p
al

in
d

ro
m

ic
n

at
u

re
o

f
th

e
D

N
A

,
th

e
sa

m
e

re
la

x
at

io
n

d
at

a
w

er
e

as
si

g
n

ed
to

st
ra

n
d

s
A

an
d

B
c

A
n

is
o

tr
o

p
ic

ro
ta

ti
o

n
al

d
if

fu
si

o
n

m
o

d
el

w
as

u
se

d
d

R
es

u
lt

s
fr

o
m

o
u

r
b

u
il

t
in

ab
in

it
io

d
if

fu
si

o
n

te
n

so
r

p
re

d
ic

to
r

E
L

M

J Biomol NMR (2013) 57:333–352 345

123



particular, we analyzed 15N relaxation data taken at 0 �C

(‘‘Akke et al.’’) (Akke et al. 1997), 15N and 13C data

taken at 25 �C (‘‘Duchardt et al.’’) (Duchardt and

Schwalbe, 2005), and just 13C data taken at 44 �C

(‘‘Ferner et al.’’) (Ferner et al. 2008) . All these data

were collected at 600 MHz 1H frequency. All the data

were fit using a recently obtained high-resolution struc-

ture of the tetraloop (PDB ID 2KOC) (Nozinovic et al.

2010). The characteristics of the diffusion tensor for the

three datasets are presented in Table 5. Overall, our

analysis reproduced the previously reported diffusion

tensor parameters. However, we also discovered previ-

ously unreported temperature-driven structural transitions

in the tetraloop.

The Akke et al. dataset, collected at 0 �C, contains

imino nitrogen R1, R2, and R3 measurements. Out of the

seven NH bond vectors available, G1 was excluded due to

large internal motions. This left only six ‘‘core’’ bond

vectors, which prevented us from using the fully aniso-

tropic diffusion tensor model. Nevertheless, the axially-

symmetric model fits experimental data well (see Fig. 9),

and gives a sc of 5.35 ± 0.24 ns, in agreement with the

previously reported value of 5.4 ± 0.10 ns (Akke et al.

1997). However, these results need to be interpreted con-

servatively since the resulting uncertainties are large due to

the small amount of available data, for example, yielding

an estimated 54� uncertainty in the orientation of the

unique principal axis of the diffusion tensor.

The Duchardt et al. dataset includes both 15N and 13C

R1, R2, and R3 data measured at 25 �C. In the original

paper, the carbon and nitrogen needed to be analyzed

separately, and the fully anisotropic diffusion model was

not analyzed due to software limitation of ModelFree

(Mandel et al. 1995). We analyzed all data simultaneously,

Table 4 Rotational diffusion tensor characteristics for D5 derived using ROTDIF from A and G base CH 13C relaxation data for axially-

symmetric diffusion tensor model

Method Nucleotides Dx* Dy Dz a* b c sc* f g

Published (Eldho

and Dayie 2007)

-SLa, -

IBb, –CTc
2.5 ± 0.1 2.5 ± 0.1 3.4 ± 0.2 69 ± 7 98 ± 15 – 6.0 ± 0.3 1.4 ± 0.2 –

ROTDIF 3 –SL, –IB, –

CT

1.81 ± 0.05 3.11 ± 0.04 3.11 ± 0.04 126 ± 42 3 ± 2 – 6.23 ± 0.04 0.58 ± 0.02 –

ROTDIF 3 –SL, –IB 1.78 ± 0.04 3.12 ± 0.05 3.12 ± 0.05 128 ± 24 5 ± 2 – 6.23 ± 0.05 0.57 ± 0.02 –

ROTDIF 3 –SL, –CT 1.99 ± 0.02 2.84 ± 0.02 2.84 ± 0.02 103 ± 2 18 ± 2 – 6.51 ± 0.03 0.70 ± 0.02 –

ROTDIF 3 –IB, –CT 2.01 ± 0.02 2.93 ± 0.03 2.93 ± 0.03 101 ± 43 2 ± 1 – 6.35 ± 0.03 0.68 ± 0.02 –

ROTDIF 3 –SL 2.01 ± 0.02 2.83 ± 0.02 2.83 ± 0.02 108 ± 2 19 ± 2 – 6.52 ± 0.02 0.71 ± 0.02 –

ROTDIF 3 –IB 1.99 ± 0.03 2.92 ± 0.03 2.92 ± 0.03 105 ± 2 6 ± 2 – 6.38 ± 0.03 0.68 ± 0.02 –

ROTDIF 3 –CT 2.02 ± 0.02 2.86 ± 0.02 2.86 ± 0.02 95 ± 0.2 12 ± 2 – 6.46 ± 0.02 0.70 ± 0.02 –

ROTDIF 3 (robust) All 2.02 ± 0.44 2.84 ± 0.75 2.84 ± 0.75 96 ± 117 16 ± 47 – 6.50 ± 0.25 0.71 ± 0.91 –

ELM – 1.57 2.33 4.53 135 77 109 5.94 2.32 0.44

* The units are 107 s-1 for Dx, Dy, Dz, ns for sc, and degrees for a, b, and c angles
a Without stem loop
b Without internal bulge
c Without catalytic triad
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with only nucleotides G1, U7, and G12 excluded. ROTDIF

3 allows selection of the appropriate rotational diffusion

model based on two criteria: the F test and the AIC. His-

torically the F test has been predominantly used for model

selection; however, recently the AIC has been suggested as

a potentially more accurate alternative (d’Auvergne and

Gooley 2003). According to AIC, the fully anisotropic

model (AIC = 357) provides the best fit to the Duchardt

et al. dataset compared to the isotropic (AIC = 1232) and

axially-symmetric models (AIC = 377), while the F test

suggests the axially-symmetric model (F = 0.72). The

results for the two models are similar, with the angle

between the unique axis of the axially-symmetric tensor

and the Dz axis of the fully anisotropic tensor of only 1�,

and only a small difference in the tensors eigenvalues. The

sc of 2.33 ± 0.01 ns for both models is in line with the

ELM prediction, and the angle between the principal axes

of the derived and ab initio predicted anisotropic tensors is

8�. The anisotropic tensor’s sc is also comparable to the

previously published value of 2.31 ± 0.13 ns. The resid-

uals of fit are shown in Fig. 10, and demonstrate a con-

sistent simultaneous fit for both carbon and nitrogen data.

The robust fit provides slightly different principal values,

but the sc and the overall orientation of the tensor remained

the same.

The Ferner et al. data set, collected at 44 �C, contains

significant outliers. The most common way for dealing with

the outliers would be curation of the data set, i.e. removal of

problematic data points/nucleotides that have elevated R2

(possibly due to conformational exchange) and/or low R3

(increased local dynamics) values. When we employed this

approach, we ended up excluding G2, A4, U7, G12, and

C14 (we define the remaining nucleotides as the ‘‘core’’). As

an alternative approach, we used robust regression, a built-in

feature of ROTDIF 3, which yielded an almost identical

result without any manual curation of the input data. The

results for both methods are shown in Table 5, and the

quality of fit of the axially-symmetric diffusion model for the

core nucleotide dataset is shown in Fig. 11.

Interestingly, when analyzing the cUUCGg tetraloop

data at 44 �C, our axially-symmetric solution deviated

from the expected prolate-tensor solution. Our results are

consistent for both regular and robust fit, as well as with

those for fully anisotropic tensor model (which only

deviates by 2� from axially-symmetric tensor orientation),

shown in Table 5). Further analysis indicated that an oblate

tensor with an anisotropy of 0.59 ± 0.10 fits significantly

better than a prolate tensor. The best prolate-tensor solution

has a v2 of 98, which is significantly higher than v2 of 33

for the best oblate solution.
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Fig. 9 The fit of the 15N

relaxation data from the Akke

et al. dataset (1997) for the core

nucleotides in cUUCGg

tetraloop to the axially-

symmetric diffusion tensor

model. a The agreement

between the experimental and
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residuals of fit, scaled by their
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between the experimental and

back-calculated q values. b The

residuals of fit scaled by their
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To visually demonstrate the difference in the orientation

of the diffusion tensor at 25 and 44 �C, in Fig. 12 we show

the orientations of the principal Dz axes of the anisotropic

diffusion tensors for Duchardt et al. and Ferner et al.

datasets, as well as of the theoretically predicted diffusion

tensor. As previously discussed, the Akke et al. dataset

contains a large uncertainty in the orientation of its diffu-

sion tensor, therefore it is not shown. The orientation of the

rotational diffusion tensor measured at 25 �C is consistent

with the theoretical prediction based on the shape of the

RNA molecule (about 9� difference). However, at higher

temperature, the Dz axis changes its orientation signifi-

cantly, while the overall rotational diffusion tensor changes

from prolate to oblate. A subtle conformational switch can

change the inertia tensor, and by association the diffusion

tensor, from being along axis A to that of C. Most analysis

of relaxation data assume that the structures at the different

temperatures are identical and therefore readily applicable.

Our current analysis suggests an important caution: either

the structure at 44 �C is different from that at 25 �C, or the

structures remain the same and the molecule undergoes a

temperature dependent conformational switch, or both. We

cannot decide in favor of any of the three scenarios. What

is clear however is that the data at the three temperatures

are not identical.

Assuming the three-dimensional structures are identical

at low and high temperatures, the above analysis suggests

that at higher temperatures the tetraloop may tumble dif-

ferently than at the lower temperatures. During our ana-

lysis, as noted above, we do in fact find both the prolate and

oblate solution. This is not unexpected, since relaxation

data analysis using axially-symmetric tensor model is

known to potentially find two minima (Blackledge et al.

1998), one for the prolate solution and one for the oblate

solution. It is physically reasonable that a short RNA can

undergo thermally induced fluctuations and fraying at

higher temperatures, and may in fact tumble as an oblate

ellipsoid. The consistently lower v2 for the oblate solution

for the axially-symmetric model, combined with the fact

that the fully anisotropic model provides similar results,

suggests that at a certain temperature a conformational

change in the cUUCGg tetraloop could mediate the prolate

to oblate transition. However in the absence of an actual

three-dimensional structure at 44 �C, this observation

remains purely speculative but a testable hypothesis.

Another interesting observation is that the overall tum-

bling of cUUCGg measured at different temperatures gen-

erally follows the Stokes–Einstein–Debye relationship (sc�
viscosity/T). If we rescale all the sc values obtained using
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Fig. 11 The fit of the 13C relaxation data from the Ferner et al.

dataset (2008) for the core nucleotides in cUUCGg tetraloop to the

axially-symmetric diffusion tensor model. a The agreement between

the experimental and back-calculated q values. b The residuals of fit

scaled by their associated standard deviations

Fig. 12 The principal Dz axes of the anisotropic tensors from ELM

prediction (A, red) and derived from Duchardt et al. (B, blue), and

Ferner et al. (C, green) datasets, overlaid on top of the cartoon of

cUUCGg. The PyMOL script for drawing the axes was automatically

generated by ROTDIF 3
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ROTDIF 3 to 25 �C, we get sc values of 2.88, 2.35, 2.44 ns

for Akke et al., Duchardt et al., and Ferner et al., respec-

tively. Thus, even though the RNA potentially undergoes a

conformational change or adopts a different three-dimen-

sional structure or both, this would not be detected by a

simple isotropic tumbling model. Detecting such a confor-

mational change might require a more complex analysis

using non-isotropic rotational diffusion models, which, as

demonstrated above, is quite straightforward even for RNA,

with the new ROTDIF 3 program.

Conclusions

We have introduced a major revision to the ROTDIF

program that includes a combination of several important

and unique features that are not found in any other pub-

lished software package and should be of broad use to the

NMR community. The features are implemented using new

state-of-the-art algorithms, object-oriented design, and

caching schemes, that provide orders of magnitude increase

in computational speed compared to previous methods,

contains complete Monte Carlo error analysis, and allows

API access to the underlying computational engine. The

API can be directly accessed in Java, MATLAB, and

several other languages.

This is the first publicly available program that combines

anisotropic rotational diffusion tensor analysis of relaxation

data for 15N with 13C at multiple fields. This combination

allows relaxation analysis of protein and/or RNA or DNA

complexes using a unified program, for example to orient and

position individual components of such complexes based on

the overall rotational diffusion tensor. The experimental

rotational diffusion tensor can be derived in seconds even for

very large datasets, and a robust regression method can be

used to compensate for unexpected contributions from

conformational exchange and other factors.

The module is integrated with an updated version of the

ab initio diffusion tensor predictor ELM to allow fast

global alignment and rigid-body docking of molecules

based solely on the relaxation data. We demonstrate that

the ELM predictions match closely the experimentally

obtained tensors for the tested DNA and RNA datasets. The

ELM predictor is easily accessible through GUI and pro-

vides an independent validation method for the derived

experimental results. To our knowledge this is the first and

only package that integrates both the experimental and

ab initio methods for relaxation data analysis, and allows

rigid-body docking using relaxation data.

These features are easily accessed through our new multi-

threaded GUI that works on virtually all modern computer

platforms. The GUI includes interactive help, robust error

checking and messages, and button access to interactive plots

of the results. This tight visual integration of features and

robust feedback significantly lowers the technical barrier and

reduces the time needed to perform relaxation analysis.

Finally, the new version of ROTDIF is integrated into the

new ARMOR package that includes a similar toolbox for

data analysis and docking based on residual dipolar cou-

plings (RDCs) (Berlin et al. 2009, 2010).
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